Chromatin Immunoprecipitation (ChIP) using Drosophila tissue.

نویسندگان

  • Vuong Tran
  • Qiang Gan
  • Xin Chen
چکیده

Epigenetics remains a rapidly developing field that studies how the chromatin state contributes to differential gene expression in distinct cell types at different developmental stages. Epigenetic regulation contributes to a broad spectrum of biological processes, including cellular differentiation during embryonic development and homeostasis in adulthood. A critical strategy in epigenetic studies is to examine how various histone modifications and chromatin factors regulate gene expression. To address this, Chromatin Immunoprecipitation (ChIP) is used widely to obtain a snapshot of the association of particular factors with DNA in the cells of interest. ChIP technique commonly uses cultured cells as starting material, which can be obtained in abundance and homogeneity to generate reproducible data. However, there are several caveats: First, the environment to grow cells in Petri dish is different from that in vivo, thus may not reflect the endogenous chromatin state of cells in a living organism. Second, not all types of cells can be cultured ex vivo. There are only a limited number of cell lines, from which people can obtain enough material for ChIP assay. Here we describe a method to do ChIP experiment using Drosophila tissues. The starting material is dissected tissue from a living animal, thus can accurately reflect the endogenous chromatin state. The adaptability of this method with many different types of tissue will allow researchers to address a lot more biologically relevant questions regarding epigenetic regulation in vivo(1, 2). Combining this method with high-throughput sequencing (ChIP-seq) will further allow researchers to obtain an epigenomic landscape.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression.

CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP-chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK ...

متن کامل

Mapping Dmef2-binding regulatory modules by using a ChIP-enriched in silico targets approach.

Mapping the regulatory modules to which transcription factors bind in vivo is a key step toward understanding of global gene expression programs. We have developed a chromatin immunoprecipitation (ChIP)-chip strategy for identifying factor-specific regulatory regions acting in vivo. This method, called the ChIP-enriched in silico targets (ChEST) approach, combines immunoprecipitation of cross-l...

متن کامل

Active promoters give rise to false positive ‘Phantom Peaks’ in ChIP-seq experiments

Chromatin immunoprecipitation (ChIP) is widely used to identify chromosomal binding sites. Chromatin proteins are cross-linked to their target sequences in living cells. The purified chromatin is sheared and the relevant protein is enriched by immunoprecipitation with specific antibodies. The co-purifying genomic DNA is then determined by massive parallel sequencing (ChIP-seq).We applied ChIP-s...

متن کامل

Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo.

Genetic studies have identified numerous sequence-specific transcription factors that control development, yet little is known about their in vivo distribution across animal genomes. We determined the genome-wide occupancy of the dorsoventral (DV) determinants Dorsal, Twist, and Snail in the Drosophila embryo using chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip). The ...

متن کامل

Chromosome and genetic testing using ChIP assay.

Chromatin immunoprecipitation (ChIP) assay can be used to easily visualize information about proteins, DNA, and RNA on chromosomes and is widely used for analysis of genomes, epigenomes, mRNAs, and non-coding RNAs. The ChIP assay can detect, not only DNA-binding proteins of various organisms, but also the temporal and spatial regulating mechanisms of RNA-binding proteins. Because of these featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012